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Abstract

We study the cross-sectional properties of asset returns in the presence of ambiguity

in asset returns. In our model, the cross-sectional expected returns are described

by three factors, capturing risk, mean ambiguity and variance-covariance ambiguity,

respectively. The expected returns exhibit cross-sectional characteristics consistent

with the empirical fact that the overall beta-return relation and IVOL-return relation

are both negative, but the beta-return relation is negative and stronger among over-

priced stocks while positive and weaker among under-priced stocks, and the IVOL-

return relation is negative and stronger among over-priced stocks but positive and

weaker among under-priced stocks.
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1 Introduction

Among the numerous empirical stylized facts, the beta anomaly and the idiosyncratic volatil-

ity anomaly are perhaps the simplest and yet challenging to understand. Beta anomaly refers

to the pattern in the cross-section of stock returns that the security market line is too flat

relative to the one predicted by the CAPM theory (Black, Jensen, and Scholes (1972) and

Fama and MacBeth (1973)). Idiosyncratic volatility anomaly refers to the negative relation

between idiosyncratic volatility and subsequent stock returns (Ang et al. (2006)).

There is a large literature that aims at explaining the two anomalies. Recently, however,

Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh, and Yuan (2018) o↵er additional

evidence that provides a new perspective on the anomalies and raised issues with the existing

explanations. Stambaugh, Yu, and Yuan (2015) find that when examined for the subsample

of over-priced and under-priced stocks, the relations between mispricing and idiosyncratic

volatility have opposite signs, which they argue is a challenge to the existing explanations

of the idiosyncratic volatility anomaly. Similarly, Liu, Stambaugh, and Yuan (2018) show

that while the security market line for over-priced stocks is flatter than that predicted by the

standard CAPM theory, the security market line for under-priced stocks is not flatter if not

steeper. They argue that the existing explanations of the beta anomaly would have di�culty

in reconciling with this evidence. They argue further that the beta anomaly is in fact closely

related to the idiosyncratic volatility anomaly as a result of the positive correlation between

beta and idiosyncratic volatility.

In this paper, we provide an explanation of the beta and idiosyncratic volatility anomalies

that is consistent with the findings of Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh,

and Yuan (2018). The individuals in our model are rational. The financial markets in our

model are frictionless. The key ingredient of our model is that investors do not have perfect

knowledge of the probability distribution of stock returns. As argued by Merton (1980), the

mean returns are notoriously di�cult to estimated precisely. Variances of the returns are in

general better estimated. However, the challenge with the covariance matrix is of a di↵erent

kind. One is that when the number of stocks is large, the determinant of the covariance
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matrix is very small.1 A small error in the estimate of the covariance matrix can lead to

significant di↵erence in the agent’s portfolio choice. Second, because the determinant of

the covariance matrix is very small, an approximation of the estimated covariance matrix is

used in applications, which also introduces ambiguity in the covariances. As a consequence

of the ambiguity in the means and/or the covariances, investors ask for a premium as the

compensation for that ambiguity. That premium is the mis-pricing, relative to the CAPM.

Under natural assumptions, the premium exhibits a pattern that is consistent with the beta

and idiosyncratic volatility anomalies.

In our model, agents are homogeneous. They are fully aware that there is ambiguity about

the probability law of stock returns and that the data can only provide an approximation

to the true distribution. Due to their aversion to ambiguity, they adjust their portfolios

computed according to a reference distribution to account for the ambiguity. The adjustment

leads to equilibrium returns that deviate from those computed according to the reference

distribution. We show that the deviation can be tracked by two factor portfolios, one for

the ambiguity in the expected returns of the stocks and the other for the ambiguity in the

covariances of the returns of the stocks. As such, the premia on those two factors (portfolios)

are interpreted as the premia for the two sources of ambiguity. It should, however, be

emphasized that those two factors are not factors in the traditional sense. They do not

track any fundamental market or macro risk variables, such as market return. They capture

instead the systematic ambiguity in the asset returns.

When agents are ambiguity averse, the two factors earn positive ambiguity premia. Vari-

ation in the loadings of stocks on these two factors lead to variation in the cross section

of expected returns. Stocks that have higher loading on those factors earn higher premia,

while stocks that have lower or negative loading on those factors earn lower or even negative

premia. As ex ante, there is no obvious reason that the reference distribution is related to

the level of ambiguity, beta of stocks calculated according to the reference distribution is

unlikely to be related to the systematic ambiguity of the stocks. As a consequence, if the

1For example, with just 500 stocks, the determinant of the covariance typically exceeds the computer
limit and is indistinguishable from zero.
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stocks are double-sorted on mis-pricing and beta or idiosyncratic volatility, the alphas can

and in fact are likely to exhibit the pattern as shown in Stambaugh, Yu, and Yuan (2015)

and Liu, Stambaugh, and Yuan (2018).

Through simulation we show that our model produces qualitatively similar patterns of

alphas as shown in the literature. The security market line is flatter than predicted by

CAPM. The overall idiosyncratic volatility-return relation is negative. However, the beta-

return relation is negative and stronger among over-priced stocks while positive and weaker

among under-priced stocks, and the idiosyncratic volatility-return relation is negative and

stronger among over-priced stocks, but positive and weaker among under-priced stocks.

Our paper is related to two branches of the literature. One branch is that on ambigu-

ity and its implications for asset prices. To model ambiguity averse agents, we follow the

multiple-prior approach of Gilboa and Schmeidler (1989), the dynamic version of which is

proposed by Epstein and Schneider (2003). In the study of asset pricing implications of

ambiguity, similar approach has been taken by Dow and Werlang (1992), Epstein and Wang

(1994, 1995), Chen and Epstein (2002) and Epstein and Miao (2003), Kogan and Wang

(2003), Easley and O’Hara (2009, 2010), among many others. An alternative approach to

modeling ambiguity averse agents is introduced by Hansen and Sargent (2001) and Anderson,

Hansen, and Sargent (2003). That approach is taken by Uppal and Wang (2003), Maen-

hout (2004, 2006), Liu, Pan, and Wang (2005), among others. The third, smooth ambiguity

preference, approach to modeling ambiguity averse agents is introduced by Klibano↵, Mari-

nacci, and Mukerji (2005). Klibano↵, Marinacci, and Mukerji (2009), Hayashi and Miao

(2011) provide a dynamic axiomatization of the smooth ambiguity preference. Ju and Miao

(2012) propose a generalized recursive smooth ambiguity model which permits a three-way

separation among risk aversion, ambiguity aversion, and inter-temporal substitution in a

consumption-based asset-pricing model. The innovation of our model is that it allows for

ambiguity both in the mean and in the variance-covariance matrix, while most of the exist-

ing literature assumes away the ambiguity in the variance-covariance matrix. Epstein and

Ji (2013) consider ambiguity in the volatility of one asset. Liu and Zeng (2017) study the
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e↵ect of correlation ambiguity on portfolio under-diversification. The paper that is closely

related to ours is Kogan and Wang (2003). One di↵erence between that paper and ours is

our introduction of ambiguity in variance-covariance matrix. The key di↵erence is, however,

in our focus on the role of ambiguity for understanding of the beta and the idiosyncratic

volatility anomalies.

The second branch is the literature on the beta anomaly and the idiosyncratic volatility

anomaly. That literature is large. Blitz, Falkenstein, and van Vliet (2014), Liu, Stambaugh,

and Yuan (2018), and Hou and Loh (2016), however, provide excellent summaries of the

literature. We will just provide brief summaries of those that are most relevant. One

common argument is based on trading constraints. In their explanation of the flat security

market line, Black (1972) assumes constraint on riskless borrowing. Frazzini and Pedersen

(2014) assumes leverage constraint, Hong and Sraer (2016) and Liu, Stambaugh, and Yuan

(2018)) assume short-sale constraint. Another common argument is that investors exhibit

particular behavioral preferences. It can be due to the desire to benchmark their portfolios

(Baker, Bradley, and Wurgler (2011) and Christo↵ersen and Simutin (2017)), or preferences

for positive skewness (Barberis and Huang (2008), Boyer, Mitton, and Vorkink (2010)),

lottery-like payo↵s (Bali, Cakici, and Whitelaw (2011)). Other explanation includes those

based on earnings surprises (Jiang, Xu, and Yao (2009), Wong (2011)), one-month return

reversal (Fu (2009), Huang et al. (2010)), illiquidity (Bali and Cakici (2008)), unpriced

information risk (Johnson (2004)), and a missing factor (Chen and Petkova (2012)). As

argued by Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh, and Yuan (2018) all the

existing explanations have di�culty in reconciling with their empirical findings.

The remainder of this paper is organized as follows. Section 2 describes our model.

Section 3 presents its equilibrium asset pricing implications. Section 4 focuses on the role

of ambiguity for understanding beta and idiosyncratic anomalies. Section 5 summarizes the

results and concludes.
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2 The Model

2.1 The Setting

Similar to that in Kogan and Wang (2003), we consider a frictionless representative agent

economy where the agent has constant absolute risk aversion utility with risk aversion pa-

rameter � > 0,

u(x) = �e
��x

�
,

The agent is endowed with an initial wealth W0, which is, without loss of generality, assumed

to be equal to one. Consumption takes place at the end of the period. The agent trades

N +1 assets, one riskless asset with riskless return r and N risky assets whose returns follow

a joint normal distribution. The representative agent knows that the returns are jointly

normally distributed. She is, however, ambiguous about the expected return vector µ and

variance-covariance matrix ⌦. It is this ambiguity that di↵erentiates our setting from that of

the CAPM theory. We turn now to the description of the ambiguity and the agent’s aversion

to it.

2.2 Ambiguity and Ambiguity Averse Preferences

Due to the ambiguity, the agent’s preference can not be represented by the standard expected

utility. It is instead represented by a max-min utility (Gilboa and Schmeidler (1989)).

min
Q2P

E
Q[u(W )], (1)

where P is a set of probability priors.

For our study, the specification of P is important. It is a confidence region around a

reference probability measure P . Specifically, let P be a reference probability measure, or a

reference model, under which the returns of the risky assets follow a joint normal distribution

with mean return vector µ and variance-covariance matrix ⌦. The density function of the

return distribution under P is given by

f(R) = (2⇡)�N/2|⌦|�1/2
e
� 1

2 (R�µ)>⌦�1(R�µ)
.
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The set of priors, P , takes the form

P =
�
Q : v>Jk⌦

�1
Jk
vJk  2⌘1,k, tr(⌦

�1
Jk
UJk)� ln |IJk + ⌦�1

Jk
UJk |  2⌘2,k, k = 1, ..., K

 
(2)

In the set, each Q is a probability measure under which the returns of the risky assets are

jointly normally distributed with density function given by

fQ(R) = (2⇡)�N/2|⌦̂|�1/2
e
� 1

2 (R�µ̂)>⌦̂�1(R�µ̂)
,

where µ̂ and ⌦̂ are the mean return vector and variance-covariance matrix, respectively. As

a Q in P is in general di↵erent from the reference probability measure P , v = (µ � µ̂) and

U = (⌦̂�⌦), give the di↵erence between the mean return vectors and the variance-covariance

matrices. In (2), Jk, k = 1, . . . , K, are subsets of {1, 2, . . . , N} and vJk denotes the sub-

vector consisting of those elements of v = (µ � µ̂) that are in the subset Jk. All the other

notations with subscript Jk have similar meaning. I is the identity matrix and tr(·) denotes

the trace of a matrix. In the set P , the probability measure for which v = 0 and U = 0 is

the reference probability measure P . The ⌘i,k and ⌘2,k, k = 1, . . . , K, are parameters for

setting the level of confidence of the confidence region.

The motivation of the specific form of P is the same as in Kogan and Wang (2003)

and Uppal and Wang (2003), which will be briefly described shortly. It is essentially a

confidence region defined by log likelihood ratio or relative entropy (Anderson, Hansen, and

Sargent (2003) and Uppal and Wang (2003)). In Kogan and Wang (2003), as there is no

ambiguity about the variance-covariance matrix, ⌘2,k = 0, for k = 1, . . . , K. The P in (2)

can accommodate ambiguity both in the mean and in variance-covariance matrix.

We now provide the detailed explanation of what set P captures. We do so with two

elaborated examples.

2.2.1 A Single Source of Information

As the true probability law of asset returns is unknown, the parameters of the model, µ and

⌦. have to be estimated based on the data available. Suppose that there is only a single
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data source and the result of the estimation is the reference model P . This is the case where

K = 1 and J1 = {1, . . . , N}. Since the data set is typically limited, as argued by Merton

(1980), the estimated reference model P is unlikely the true model and the (p%) confidence

region provides the information on the ambiguity of where the true model is. Let Q be a

probability measure that is potentially the true model. As the representative agent knows

that the returns follow a joint normal distribution, the return under Q has density given by

fQ(R) = (2⇡)�N/2|⌦̂|�1/2
e
� 1

2 (R�µ̂)>⌦̂�1(R�µ̂)
,

Under this measure, the expected return vector is µ̂ and the variance-covariance matrix is ⌦̂.

One measure of confidence the econometrician can use is the log likelihood ratio, EQ[ln ⇠],

where ⇠ = dQ/dP is the density of Q with respect to P . In terms of the reference probability,

the likelihood ratio is the relative entropy, E[⇠ ln(⇠)], of Q with respect to P . As argued in

Kogan and Wang (2003) and Uppal and Wang (2003), E[⇠ ln(⇠)] is a good approximation of

the empirical log-likelihood when the number of observations is large.

It is readily verified that

dQ

dP
= ⇠(R) =

|⌦| 12
|⌦̂| 12

e
� 1

2 (R�µ̂)>⌦̂�1(R�µ̂)+ 1
2 (R�µ)>⌦�1(R�µ)

,

A bit of algebra shows

E[⇠ ln(⇠)] =
1

2

⇥
tr(⌦�1

U)� ln |I + ⌦�1
U |+ (µ� µ̂)>⌦�1(µ� µ̂)

⇤
(3)

where U = ⌦̂� ⌦.

Suppose that Q is the true model and it is in the confidence region specified in (2).

Consider first the case where there is no ambiguity about the true variance-covariance matrix.

Following (3) the relative entropy in this case, denoted by Lmean, is given by

L
Q
mean =

1

2
(µ� µ̂)>⌦�1(µ� µ̂)

Thus the relative entropy of Q, LQ
mean < ⌘1,1.

Suppose next the case where there is no ambiguity about the true mean return vector.

The relative entropy in this case, denoted Lcov, is given by

L
Q
cov =

1

2

⇥
tr(⌦�1

U)� ln |I + ⌦�1
U |
⇤
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This in this case, the relative entropy of Q, LQ
cov < ⌘2,1.

Given L
Q
mean and L

Q
cov, what (2) says is that forQ to be in P , its mean likelihood, measured

by L
Q
mean, must be less than ⌘1,1 and its variance-covariance likelihood, measured by L

Q
cov,

must be less than ⌘2,1.

2.2.2 Multiple Sources of Information

More realistically, the investors can obtain multiple data sources on the returns and each

data source pertains to only a subset of the risky assets. To model multiple sources of

information, let Jk = {j1, j2, ..., jNk
}, k = 1, 2, . . . ,K, be subsets of {1, 2, . . . , N}, and [kJk =

{1, 2, ..., N}. So overall the agent has some information about each asset. The distribution

of asset returns for any source of information Jk is that for RJk = (Rj1 , Rj2 , ..., RjNk
). We

assume the reference probability law implied by the various sources of information coincides

with the marginal distributions of the reference model P (denoted as PJk). The density

function of RJk under the true model Q is

f(RJk) = (2⇡)�1|⌦̂Jk |�1/2
e
� 1

2 (RJk
�µ̂Jk

)>⌦̂�1
Jk

(RJk
�µ̂Jk

)
,

which is the marginal distribution of Q (denoted as QJk), where µ̂Jk and ⌦̂Jk are the mean

return vector and variance-covariance return matrix of RJk . Thus, the likelihood ratio of the

marginal distribution QJk with respect to PJk is

⇠(RJk) =
|⌦Jk |

1
2

|⌦̂Jk |
1
2

e
� 1

2 (RJk
�µ̂Jk

)>⌦̂Jk
(RJk

�µ̂Jk
)+ 1

2 (RJk
�µJk

)>⌦Jk
(RJk

�µJk
)
,

For convenience, we use the same notation ⌦̂�1
Jk

(⌦�1
Jk
) to denote the N ⇥ N -matrix whose

elements in the jm-th row and jn-th column, for jm and jn in Jk, is the same as the elements

in the m-th row and n-th column of the matrix ⌦̂�1
Jk

(⌦�1
Jk
), otherwise it is zero. Then the

relative entropy is

E[⇠Jk ln(⇠Jk)] =
1

2

⇥
tr(⌦�1

Jk
UJk)� ln |I + ⌦�1

Jk
UJk |+ (µ� µ̂)>⌦�1

Jk
(µ� µ̂)

⇤
(4)

With expression (4), we see that for a Q to be in the set P , its mean likelihood and variance-

covariance likelihood based on information k must be less than ⌘1,k and ⌘2,k, respectively, for
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all k = 1, . . . , K.

3 Portfolio Choice

Because of the presence of ambiguity, the representative agent’s portfolio choices will be

di↵erent from that when there is no ambiguity. The agent will not only consider the trade-o↵

between risk and return, but also the trade-o↵ between those with ambiguity. To understand

how the agent trades o↵ ambiguity, risk and return, it is useful to introduce a metric for

ambiguity. In the next two subsections, we will introduce our metric for mean return and

variance-covariance ambiguity, respectively.

3.1 Measure of Mean Ambiguity

Suppose first that there is no variance-covariance ambiguity. In this case, the relative entropy

including mean ambiguity only becomes

E[⇠ ln(⇠)] =
1

2
(µ� µ̂)>⌦�1(µ� µ̂),

Let ✓ denote the portfolio of the risky assets of the agent and ✓
>
R the portfolio return. The

metric we use to measure the ambiguity in the mean return of the portfolio is given as

�1(✓) = sup
Q2P

✓
>(µ� µ̂), (5)

where

P1 = {Q : E[⇠Jk ln(⇠Jk)] = (µ� µ̂)>⌦�1
Jk
(µ� µ̂)  2⌘1,k, k = 1, 2, ..., K}.

By the metric, the di↵erence between the expected return of the portfolio under the reference

model P and the true expected return of the portfolio, ✓>(µ � µ̂), falls into the interval

[��1(✓),�1(✓)]. Thus �1(✓) is the maximum possible error in using the reference model P

to gauge the true expected return of the portfolio, given the confidence region described by

P1. Clearly, the smaller the �1(✓), the less ambiguity there is about the expected return of
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the portfolio. As shown in Kogan and Wang (2003), diversifiable ambiguity has no impact

on v(✓).2

Lemma 1 Let ✓ be a portfolio of the risky assets. A solution to (5) exists. If the portfolio

✓ is such that ✓i 6= 0 for all i = 1, . . .N , then the solution v(✓) is unique and is given by,

v(✓) = ⌦µ(✓)✓, (6)

where ⌦µ(✓)

⌦µ(✓) =

 
KX

k=1

�1,k(✓)⌦
�1
Jk

!�1

and �1,k, k = 1, . . . , K, are Lagrangian multipliers for the K constraints in the definition

of P1. Moreover, ⌦µ is positive definite.

Obviously, �1(✓) = ✓
>
v(✓) depends on the set P1 and the portfolio ✓. The Lagrangian

multipliers �1,k(✓), k = 1, . . . , K, measure how much each source of information contributes

to the ambiguity of the portfolio. If �1,k(✓) = 0, for example, the kth source of information

does not help to reduce the ambiguity for the portfolio ✓.

3.2 The Measure of Variance-Covariance Ambiguity

Now suppose that there is no ambiguity in the mean return vector. In this case,

E[⇠ ln ⇠] =
1

2

⇥
tr(⌦�1

U)� ln |I + ⌦�1
U |
⇤

We define the measure of the ambiguity in variance-covariance by

�2(✓) = sup
Q22P2

✓
>
U✓, (7)

where U = (⌦̂� ⌦) and

P2 =

⇢
Q :

1

2

⇥
tr(⌦�1

Jk
UJk)� ln |IJk + ⌦�1

Jk
UJk |

⇤
 ⌘2,k, k = 1, 2, ..., K

�
.

2For easy reference, the definition of diversifiability is provided in the appendix.
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If ⌦̂ is the true variance-covariance matrix, then the true variance of the portfolio return

is ✓>⌦̂✓. However, under the reference model P , the variance is ✓>⌦✓. Thus, by using the

reference model, given the confidence region described by P2, the maximum error in the

variance of the return of the portfolio is given by �2(✓).

Lemma 2 If the portfolio ✓ is such that ✓i 6= 0 for all i = 1, . . .N , then the solution of (7)

exits and is unique.

3.3 Portfolio Choice of the Agent

Having defined the preference of the investor and the measure of ambiguity, we now turn to

the portfolio choice problem of the agent. Using the utility function from (1), the represen-

tative agent’s utility maximization problem is

sup
✓

min
Q2P

E
Q[�e

��W
/�],

where the set P is as given in (2), subject to the agent’s wealth constraint W = W0[✓(R �

r1) + 1 + r]. where 1 is the N -vector (1, 1, . . . , 1)>.

Proposition 3 The agent’s utility maximization problem has a solution ✓ given by,

✓ = �
�1(⌦+ U(✓))�1(µ� r1� v(✓)), (8)

where v(✓) and U(✓) are the solutions of (5) and (7), respectively, given the portfolio ✓.

The solution (8) is fairly intuitive. When there is no ambiguity, that is, v(✓) = 0 and

U(✓) = 0, (8) reduces to the standard mean-variance optimal portfolio. When there is only

ambiguity in the expected returns, (8) reduces to that given in Kogan and Wang (2003).

More generally, (8) says that in the presence of ambiguity, the agent behaves as if the true

expected return vector of the assets is given by µ under the reference model P adjusted

by v(✓) and the variance-covariance matrix is ⌦ adjusted by U(✓). The expected portfolio

return is then ✓
>
µ ��1(✓) and the variance of the portfolio return is ✓>⌦✓ +�2(✓). That
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is, the agent behaves as if the expected portfolio return is that under the reference model

adjusted downward by �1(✓), which is the ambiguity in the mean, and the variance is that

under the reference model adjusted upward by �2(✓), which is the ambiguity in the variance.

4 Equilibrium Expected Returns

To derive the equilibrium, let ✓m denote the market portfolio of risky assets.3 In equilibrium,

the representative agent holds the market portfolio. It then follows from Proposition 3 that

the expected return on the individual stocks and on the market must satisfy

µ� r1 = �⌦✓m + �U(✓m)✓m + v(✓m) (9)

µm � r = �✓
>
m⌦✓m + �✓

>
mU(✓m)✓m +�1(✓m). (10)

Thus we have the following theorem.

Theorem 4 The equilibrium vector of expected excess returns is given by

µ� r1 = �� + �µ�µ + �⌦�⌦, (11)

where

� =
⌦✓m

✓>m⌦✓m
, � = �✓

>
m⌦✓m = ��

2
m

�µ =
⌦µ(✓m)✓m

✓>m⌦µ(✓m)✓m
, �µ = �1(✓m) = ✓

>
m⌦µ(✓m)✓m

�⌦ =
U(✓m)✓m

✓>mU(✓m)✓m
, �⌦ = ��2(✓m) = �✓

>
mU(✓m)✓m.

where ⌦µ(✓m) and U(✓) are solutions of (5) and (7), respectively.

Theorem 4 describes equilibrium asset expected returns in the cross-section. It has rich

implications. In particular, equation (11) is what the analysis of beta anomaly and idiosy-

cratic volatility anomaly in Section 6 will be based on. The three terms on the right hand

3For easy comparison with the standard notion of �, we require that the market portfolio weights add
up to one. In the following, ✓ that does not have m as part of its subscript does not have to meet the
requirement that its components sum to one.
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side of equation (11) have the natural interpretation that �� is the risk premium, �⌦�⌦

is the variance-covariance ambiguity premium, and �µ�µ is the mean ambiguity premium.

Clearly, when there is no ambiguity, the second and third terms on the right hand side of

(11) are equal to zero and (11) reduces to the standard CAPM. The � is then the standard

CAPM beta. Just as the interpretation for the risk premium where � is the price of risk and

� is the systematic risk, �µ and �⌦ are the prices of ambiguity in the expected return and

variance-covariance matrix, and �µ and �⌦ are the systematic ambiguities in the expected

return and variance-covariance matrix, respectively, which we explain now.

While the risk premium is well understood from the standard CAPM theory, what exactly

are those ambiguity premia and how are they related to the ambiguity introduced earlier in

(5) and (7)? To understand the relation, consider first the case where there is only mean

ambiguity. Let ✓µ be the portfolio defined by ✓µ = ⌦�1⌦µ(✓m)✓m. The return of the portfolio

is Rµ = ✓
>
µR. By Lemma 1, ⌫(✓m) = ⌦µ(✓m)✓m = ⌦✓µ. Next let ✓ be an arbitrary portfolio.

As shown in Kogan and Wang (2003), the total ambiguity of the portfolio ✓ is ✓>⌫(✓) and

its systematic ambiguity is ✓>⌫(✓m). Using the portfolio ✓µ, the systematic mean ambiguity

of the portfolio ✓ is ✓>⌦✓µ, which is the covariance between the return of the portfolio ✓ and

that of ✓µ. According to Theorem 4, the mean ambiguity beta of the portfolio ✓ is

�µ(✓) =
✓
>⌦µ(✓m)✓m

✓>m⌦µ(✓m)✓m
=

✓
>⌦✓µ

✓>m⌦µ(✓m)✓m
=

cov(R✓, Rµ)

✓>m⌦µ(✓m)✓m

Therefore, the mean ambiguity beta of the portfolio ✓, �µ(✓), is zero if and only if the

systematic mean ambiguity of the portfolio ✓ is zero. In other words, a portfolio earns

mean ambiguity premium if and only if its systematic mean ambiguity is non-zero, and that

systematic ambiguity is captured by the covariance between the return of the portfolio ✓

and that of ✓µ. Because of the relationship between the systematic mean ambiguity of ✓ and

the covariance between R✓ and Rµ, ✓µ is a factor portfolio for the ambiguity of the expected

returns. Any asset or portfolio that has non-zero loading on the factor will earn a (mean)

ambiguity premium.

Similarly, the total variance-covariance ambiguity of the portfolio ✓ is ✓
>
U(✓)✓ and its
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systematic ambiguity is ✓>U(✓m)✓m.4 Let ✓⌦ be the portfolio defined by ✓⌦ = ⌦�1
U(✓m)✓m

and R⌦ = ✓
>
⌦R be its return. According to Theorem 4, the variance-covariance ambiguity

beta of the portfolio ✓ is

�⌦(✓) =
✓
>
U(✓m)✓m

✓>mU(✓m)✓m
=

✓
>⌦✓⌦

✓>mU(✓m)✓m
=

cov(R✓, R⌦)

✓>mU(✓m)✓m

That is, the variance-covariance ambiguity beta of the portfolio ✓, �⌦(✓), is zero if and

only if the systematic variance-covariance ambiguity of the portfolio ✓ is zero. The portfolio

earns variance-covariance ambiguity premium if and only if its systematic variance-covariance

ambiguity, captured by cov(R✓, R⌦), is non-zero. The portfolio ✓⌦ is a factor portfolio for

the variance-covariance ambiguity.

As a simple example to illustrate the contrast between the standard CAPM and Theorem

4, lets consider a market neutral strategy. When there is no ambiguity, a zero-beta portfolio

✓ that neutralizes the standard market risk (✓>� = 0) delivers the market neutral returns.

When there is ambiguity, however, the return on that portfolio may no longer be market

neutral. The three factor structure described in Theorem 4 suggests that a portfolio ✓ that

also neutralizes ambiguity, that is, the portfolio such that ✓>� = 0, ✓>�µ and ✓
>
�⌦ = 0, is

more likely to be market neutral.

Theorem 4 provides a three-factor structure for the expected returns of the asset. While

we call Rµ and R⌦ factors, it should be emphasized that they are not factors in the traditional

sense. That is, they do not track some fundamental market or macro risk variables. They

arise not because of the presence of these risk variables. Rather it is because the agent lacks

precise knowledge of the true distribution of the asset returns and that ambiguity cannot be

diversified away. However, that is not to say there will not be economic variables that are

highly correlated with Rµ and R⌦. In that case, it must be that those economic variables

track the systematic ambiguity of asset returns.

Before turning to the empirical implications of Theorem 4, we comment on whether the

predictions of Theorem 4 are empirically distinguishable from those of the CAPM theory.

4In general, U may not be positive definite. However, as shown later, in the case of multiple non-
overlapping sources of information, U is positive definite.
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We provide two examples to elaborate on that.

One Source of Information

When there is only one source of information (K = 1), it can be shown that

µ� r1 = (� + ��1 + �2)⌦✓m

where �1 > 0 and �2 > 0 are two positive numbers. Thus it is as if the representative agent

lives in a world with risk only and she has a higher level of risk aversion. The standard

CAPM holds. This is reminiscient of the result in Anderson, Hansen, and Sargent (2003).

This example shows that the presence of ambiguity does not necessarily leads to violation

of CAPM. In this case, the standard zero-beta portfolio will neutralize with the confidence

determined by P , the uncertainty from both risk and ambiguity.

Multiple Non-overlapping Sources of Information

Another interesting case is one of non-overlapping sources of information. Suppose that there

are K sources of information and they are non-overlapping in the sense that each source of

information is about a subset of the N assets and the subsets do not overlap. In this case

we can divide N assets into K non-overlapping groups and solve (5) and (7) to get explicit

expressions for �1(✓) and �2(✓).

Lemma 5 Let ✓ be a portfolio and ✓Jk be the sub-vector of ✓ containing components for

assets in group k for k = 1, . . . , K. If the K sources of information are non-overlapping,

then the solutions of (5) and (7) are given by,

v(✓) =

2

6664

p
2⌘1,1

�J1
⌦J1 · · · 0

...
. . .

...

0 · · ·
p

2⌘1,K

�JK
⌦JK

3

7775

2

6664

✓J1

...

✓JK

3

7775
(12)
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and

U(✓) =

2

66664

f(⌘2,1)
�2
J1

⌦J1✓J1✓
>
J1⌦J1 · · · 0

...
. . .

...

0 · · · f(⌘2,K)
�2
JK

⌦JK✓JK✓
>
JK

⌦JK

3

77775
(13)

where �
2
Jk
(✓m) = ✓

>
Jk
⌦Jk✓Jk , f(⌘) is implicitly defined by

2⌘ = f(⌘)� ln (1 + f(⌘)) ,

and �1,k, �2,k(✓) are given by

�1,k =

s
�
2
Jk

2⌘1,k
, �2,k(✓) = 2✓>Jk⌦Jk✓Jk

✓
1 +

1

f(⌘2,k)

◆
. (14)

Moreover, U is positive definite.

Given the explicit solutions, it follows from Theorem 4 that, for the asset j in group k,

the mean ambiguity beta is, for j 2 Jk,

�µ,j =
1

�1(✓m)
vj(✓m) =

p
2⌘1,k�JkPK

k=1

p
2⌘1,k�Jk

�Jk,j,

where �Jk,j = cov(rj, ✓>JkRJk)/�
2(✓Jk). Interestingly, the mean ambiguity beta of the market

portfolio is the risk beta of portfolio ✓Jk scaled down by a weight, with the weight being

determined by the ambiguity.

For the variance-covariance ambiguity beta,

�⌦,j =
[U✓m]j
✓>mU✓m

=
✓
>
Jk
UJk(✓m)✓Jk
�2(✓m)

[UJk(✓m)✓Jk ]j
✓
>
Jk
UJk(✓m)✓Jk

=
f(⌘2,k)�2

JkPK
k=1 f(⌘2,k)�

2
Jk

�Jk,j.

Putting things together, we have the following corollary,

Corollary 6 If the K sources of information are non-overlapping, then the expected return

on the individual asset j in the group k is given by

µj � r = ��
2
m�j +

�p
2⌘1,k�Jk + �f(⌘2,k)�

2
Jk

�
�Jk,j, (15)

Corollary 6 shows that when there are more than one sources of information on the

probability distribution of the returns, the equilibrium expected returns in our model di↵ers

from those in the CAPM theory.
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5 Equilibrium Asset Prices

In this section, to prepare for the analysis in Section 6, we rewrite the equilibrium returns

in Theorem 4 in terms of exogenous dividends and the equilibrium asset prices. Suppose

that the vector of exogenous dividends D follows a joint normal distribution. The reference

distribution is one with mean vector d and variance-covariance matrix ⌃. Let P denote the

equilibrium price vector. Let ✓m denote the market portfolio in terms of portfolio weights

and ✓̄m denotes the market portfolio in terms of shares. Then

Rj =
Dj

Pj
� 1, µj =

dj

Pj
� 1, ⌦ = diag(1/P ) ⌃ diag(1/P ),

Rm =
✓̄
>
mD

✓̄>mP
� 1, ✓m = diag(P )✓̄m, (⌦✓m) = diag(1/P )⌃✓̄m.

where diag(x) is the diagonal matrix whose diagonal elements are given by the elements of

vector x. Note that ✓>m1 is not necessarily equal to one as the riskless rate r is exogenously

given.

When there is no ambiguity, the equilibrium price vector is given by,

P =
1

1 + r
(d� �⌃✓̄m),

and the beta is given by

� =
1

✓̄>m⌃✓̄m
diag(1/P )⌃✓̄m,

The expected excess return of individual asset and market portfolio are respectively,

µ� r1 = �diag(1/P )⌃✓̄m, µm � r = �✓̄
>
m⌃✓̄m,

The CAPM holds,

µj � r =
1

Pj

(⌃✓̄m)j
✓̄>m⌃✓̄m

(µm � r).

When there is mean ambiguity and variance-covariance ambiguity under independent

source of information, Corollary 6 in Section 4 shows that the equilibrium price for the asset
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j in group k is

Pj =
1

1 + r

 
dj � �(⌃✓̄m)j �

 s
2⌘1,k

✓̄
>
Jk
⌃Jk ✓̄Jk

+ �f(⌘2,k)

!
(⌃Jk ✓̄Jk)j

!
. (16)

It is worth noting that if the means and variances, d and ⌃, of dividends, as well as ⌘i,k,

are all scaled up by a factor C, then the prices P are scaled up by C as well. This linear

homogeneity is useful in the simulation analysis later.

Now we turn to the understanding of the beta and idiosyncratic volatility anomalies.

6 Understanding Anomalies

As discussed in the introduction, the literature has provided several possible explanations

of the beta and idiosyncratic volatility anomalies. In this section, we show that the the-

ory developed in the preceding sections can provide an alternative explanation of the beta

and IVOL anomalies. While a serious empirical evaluation is beyond the scope of this pa-

per, the simulation exercise provided highlights the economic mechanism that underlies the

explanation.

6.1 Over-Pricing and Under-Pricing

An analysis of anomaly typically starts with the mis-pricing of assets according to a bench-

mark asset pricing theory.5 The setting of our model is that of CAPM, except that the

representative agent has max-min utility instead of the expected utility. Thus the bench-

mark theory for over-pricing and under-pricing is CAPM. That is,

µj � r = ↵j + (µm � r)�j,

5It should be noted that there is not a universal benchmark theory. The benchmark theory used typically
depends on the particular empirical anomaly being evaluated and the particular study. The benchmark we
provide is based on the mean-variance framework we used to develop our theory.
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and a non-zero ↵j implies mis-pricing. Asset j is under-priced if ↵j > 0. It is over-priced if

↵j < 0. It then follows from Theorem 4 that

↵j = [�� (µm � r)]�j + �µ�µ,j + �⌦�⌦,j.

Since µm � r = �+ �µ + �⌦, rewriting yields

↵j =

✓
�µ


�µ,j

�j
� 1

�
+ �⌦


�⌦,j

�j
� 1

�◆
�j. (17)

What this shows is that mispricing is driven by the interaction of the risk and ambiguity

of the asset. Equation (17) is the basis on which we provide our analysis of the beta and

idiosyncratic volatility anomalies. We will argue below in more detail how the interaction of

risk and ambiguity of assets give rise to the beta and idiosyncratic volatility anomalies.

6.2 Beta Anomaly

In the classical CAPM of Sharpe (1964) and Lintner (1965) theory, stocks with higher betas

should earn higher premia than stocks with lower betas. However, the empirical evidence

shows that high-beta stocks earn too little compared to low-beta stocks (Black, Jensen, and

Scholes (1972) and Fama and MacBeth (1973)). As noted in the introduction, there are

several explanations in the literature. Here in this section, based on the theory developed

earlier, we provide an alternative explanation of the beta anomaly.

We will present first the results from a simulation. We focus on the special case of (17)

where there are non-overlapping sources of information about the mean of the liquidating

dividends. We assume there is no ambiguity about the variance-covariance matrix and

simulate the model as follows.6

6In the simulation, the ambiguity is assumed to be about the distributions of dividends, as opposed
to the distributions of asset returns. The set P in (2) can be readily converted into a set in terms of the
probability distributions of dividends. In the case of mean ambiguity only, as

(µ� µ̂)⌦�1(µ� µ̂) = (d� d̂)Diag(1/P ) [Diag(1/P )⌃Diag(1/P )]�1 Diag(1/P )(d� d̂) = (d� d̂)⌃�1(d� d̂)

the set of probability measures is the same as P in (2).
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1. Set the number of stocks n to be 1000. We make 1000 draws from the normal dis-

tribution N(200, 5) as the mean vector d of the 1000 liquidating dividends.7 We use

US stocks monthly price and return data to estimate the monthly variance-covariance

matrix of the liquidating dividends ⌃ as follows. We randomly choose 1000 stocks (we

require that each stock should have over 20 years’ monthly data) and calculate the

correlation matrix. We then draw 1000 times from N(0.45, 0.08) and take the square

of the absolute values of the 1000 draws as the elements of the diagonal of ⌃.8 The

supply of each asset equals to 1. The risk aversion coe�cient is 2. The risk-free rate is

set to be r = 3%, annualized.

2. Assume that there are non-overlapping sources of information about mean ambiguity

of the liquidating dividends. We divide the 1000 stocks into two groups of 500 each.

Draw 600 times from the joint dividends distribution N(d,⌃) and take those samples as

realized dividends for the assets (dividend data for 50 years). Calculate the equilibrium

return based on the simulated dividends, rj,t = Dj,t/Pj � 1. The mean ambiguity

confidence level of the first group and the second group are ⌘1 = 200 and ⌘2 = 250

respectively.9

3. The econometrician uses those realized returns to run regressions to estimate CAPM

beta and to calculate the variance of the residuals as Ivol for each asset. Calculate the
7The particular choice of the mean of this distribution is not very important, as the price is proportional

to the mean dividend when d, ⌃ and ⌘1 and ⌘2 are properly scaled. The standard deviation is to ensure the
mean returns have some variation. The small ratio of 5/200 is only to ensure that the prices are all positive.

8 This is a convenient way of generating the a 1000⇥1000 variance-covariance matrix of dividends whose
correlation matrix mimics that of the 1000 stocks chosen. The absolute values of the parameters of the
distribution, 0.45 and 0.08, are not important as, again, price is proportional to the mean dividend when d,
⌃ and ⌘1 and ⌘2 are properly scaled. So the ratio 0.08/

p
0.45 is smaller than that for the 1000 stocks used

for calculating the correlation matrix and is chosen to ensure positive prices. We have experimented with a
variety of the ratios, the qualitative results are robust to the variation.

9If the mean of the reference model P is estimated using sample average, µ̂, then for the true model
Q ⇠ N(µ,⌦), (µ̂� µ)[⌦/600]�1(µ̂� µ) = 600(µ̂� µ)⌦�1(µ̂� µ) follows �2 distribution with 500 degrees of
freedom. The 5% critical value for that distribution is over 500. Since the parameters ⌘1 and ⌘2 represent
both the presence of ambiguity and the agent’s ambiguity aversion. By choosing ⌘1 and ⌘2 that is significantly
below the 5% critical value, we are assuming that the representative agent is not very ambiguity averse. We
have experimented with the levels of ⌘1 and ⌘2. The qualitative results are robust.
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average of excess returns of each asset as the true return and the average of market

excess returns as the true market excess return. Then define the alpha as the di↵erence

between the true return and the product term of CAPM betas multiplying average

market excess return. We also use alphas to proxy for mispricing.

4. We double-sort the stocks by mis-pricing (↵) and beta into 5 quintiles each and obtain

5⇥ 5 cells. For each cell, we compute the average of the ↵s of the stocks in that cell.

We also compute the t-statistics of the average. We restrict to stocks with positive

betas only, which is on average about 90% of the stocks, for comparison with Liu,

Stambaugh, and Yuan (2018).

The result of the simulation is reported in the Table 1. Panel A reports the averages of

the ↵s and Panel B reports the t-statistics of the averages. In the middle of Panel A are

the 5 ⇥ 5 cells of double-sort. The last row reports the average of ↵s of all stocks sorted

by beta. The second last row are the di↵erences in ↵ between the most over-priced and the

most under-priced stocks. The last column of Panel A shows the di↵erences, H�L, between

the average ↵s of the stocks with the highest beta and that with the lowest beta.

The reported result is consistent with the existing literature. First, the last row of Panel

A shows that there is a negative relation between ↵ and beta, which is the beta anomaly

reported in Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973), among others.

Next, di↵erentiating between over-priced and under-priced stocks, the first row of Panel A

shows that among over-priced stocks, there is a negative relationship between ↵ and beta,

while the fifth row shows that among under-priced stocks, there is a positive relationship

between ↵ and beta. That is, if over-priced and under-priced stocks are di↵erentiated, there

is beta anomaly in the over-priced stocks and there is no beta anomaly in the under-priced

stocks. If anything, the relation between ↵s and beta for the under-priced stocks is more

likely to be positive, opposite to the sign in the beta anomaly. The middle rows, which are

for stocks that are not obviously mispriced, ↵ and beta exhibit a flat relation. Third, Panel

B of Table 1 shows that the negative relations between ↵ and beta for all stocks and for over-

priced stocks, measured by H-L in the last column in Panel A, are statistically significant,
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Table 1: Alphas for Portfolios Sorted on Beta and Mispricing

The table reports the alpha for portfolios formed by an independent 5 ⇥ 5 sort on Beta and

Mispricing.

Mispricing Beta Quintile

Quintile Lowest 2 3 4 Highest H-L

A. Alpha (%)

Over-priced -0.66 -0.63 -0.59 -0.69 -0.80 -0.15

2 -0.24 -0.24 -0.26 -0.25 -0.24 -0.01

3 0.02 -0.01 0.01 0.01 0.03 0.01

4 0.27 0.25 0.25 0.24 0.26 -0.01

Under-priced 0.66 0.65 0.67 0.71 0.72 0.07

Over-Under -1.32 -1.28 -1.26 -1.40 -1.53

All stocks 0.10 0.05 0.04 -0.07 -0.13 -0.24

B. T statistics

Over-priced -14.99 -16.63 -15.55 -17.44 -27.39 -2.59

2 -15.54 -17.74 -20.74 -19.17 -15.80 -0.33

3 1.97 -0.65 1.22 1.17 1.87 0.65

4 21.32 24.28 22.70 19.04 13.05 -0.40

Under-priced 20.30 16.24 15.29 14.41 19.77 1.35

Over-Under -24.17 -22.26 -20.36 -21.91 -32.73

All stocks 3.29 1.80 1.35 -2.14 -2.85 -4.21
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while the positive relation between ↵ and beta for under-priced stocks is not statistically

significant at the usual levels of confidence. Overall, the pattern of ↵ reported in Table 1 is

qualitatively similar to that reported in Liu, Stambaugh, and Yuan (2018).

Table 1 reports the results of one run of the simulation. To check the qualitative robust-

ness of the results, we repeat the exercise 5000 times. The H-L cell in the over-price quintile

is significant (at 5%) 89.5% of the 5000 simulation exercises. The corresponding numbers for

H-L cells for the under-pricing quintile and all stocks are 14.6% and 100.0%, respectively.

The basic intuition of the reported simulation results can be explained as follows. When

there is ambiguity in the mean only, (17) reduces to

↵j = �µ


�µ,j

�j
� 1

�
�j. (18)

In terms of averages,

↵̄k,l = �µ

�
x̄k,l�̄k,l + covk,l(x, �)

�
, xj = �µ,j/�j � 1

where ↵̄k,l and �̄k,l are the averages in each of the 5⇥ 5 mispricing by beta cells, indexed by

(k, l). The covariance between �µ,j/�j and �j is given by
P

j(xj� x̄)(�j� �̄)/(Nij�1) where

Nk,l is the number of stocks in the cell. Equation (18) suggests that for assets with positive

betas, which is the case for most assets in the real world data and for most assets in our

simulation,10 there is over-pricing if and only if �µ,j < �j. If �µ,j/�j and �j are not highly

correlated, then, for over-priced (under-priced) stocks with positive betas, ↵j averaged for

each beta quintile is decreasing (increasing) in �j and hence H-L is negative (positive) for

over-priced (under-priced) stocks. Thus, double sorting by mis-pricing and beta is likely to

lead to what is seen in Panel A of Table 1.

The last row of Panel A of Table 1 is the beta anomaly. As risk beta increases from left

to right, the mis-pricing decreases, leading to a flatter security market line. To understand

it, note that according to Theorem 4,

µj � r = ��j + �µ�µ,j.

10See Table 1 of Liu, Stambaugh, and Yuan (2018). In our simulations, about 90% stocks have positive
betas.
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It is readily shown that standard OLS gives the following expression for the slope coe�cient

of �,

�̂ = µm � r + �µ

⇢
Cov(�, �µ)

V ar�
� 1

�
,

If Var(�µ,j)  Var(�j) and ⇢(�, �µ) < 1, then Cov(�,�µ)
V ar� < 1 and hence the slope is smaller

than µm � r. That is, the security market line is flatter than what the standard CAPM

predicts.

The condition that ⇢(�, �µ) < 1 seems sensible. It holds as long as � and �µ are not

perfectly correlated. For the condition that Var(�µ,j)  Var(�j), consider the regression of

�µ,j on �j,

�µ,j = a+ b�j + ✏

Clearly, Var(�µ,j) = b
2Var(�j)+Var(✏). In our repeated simulation exercises, it is consistently

found that a > 0 and 0 < b < 1. Thus as long as Var(✏) is not too large, Var(�µ,j)  Var(�j).

For a more intuitive understanding, let ✓S be a portfolio of a subset S of the N risky

assets and
P

j2S ✓S,j = 1. Specifically, let ✓S,j = 1/S. The systematic risk of the portfolio is

✓
>
S �S and the systematic ambiguity is ✓>S �µ,S. Suppose that S is a portfolio of risky assets

such that ✓>S �S ⇡ 0. Then,

✓
>
S �µ,S = a+ b✓

>
S �S + ✓

>
S ✏S ⇡ a+ ✓

>
S ✏S

Since ✏j is conditionally uncorrelated with �j and E[✏j|�] = 0, ✓>S ✏S = 1
S

P
j2S ✏j ⇡ E[✏j] =

E[E[✏j|�]] = 0. Therefore a > 0 is equivalent to ✓
>
S �µ,S > 0. Since ✓

>
S �µ,S measures the

systematic ambiguity of the portfolio S, a > 0 simply means that the ambiguity averse

investors ask for a positive premium for bearing the systematic ambiguity even though the

systematic risk of the portfolio is approximately zero. Finally, as �m = �µ,m = 1, a > 0

implies that the regression coe�cient b < 1.

In summary, when the betas of the stocks are small (large), the ambiguity of the stocks

may not be small (large) relatively. In regression terms, the regression of �µ,j on �j has

positive intercept and coe�cient of less than one. Because of that, small (large) beta stocks
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tend to be under-priced (over-priced). Therefore for small (large) beta stock, under-priced

(over-priced) stocks tend to dominate the over-priced (under-priced) stocks. Consequently,

as beta increases, the increase of ↵ for under-priced stocks is not as steep as the decline of

↵ for over-priced stocks. This asymmetry produces two e↵ects. One is that H-L for under-

priced stocks is less likely to be statistically significant. Second, H-L for all stocks is likely

to be significant, which is shown in the last row of Panel A.

In Table 2, we report the results from 5000 repeated simulations. Panel A reports the

averages of �j. They are quite consistent across di↵erent mispricing quintiles. Panel B is the

averages of the covariances between �µ,j/�j and �j in each of the 5⇥5 mispricing and beta

cells. They are all fairly small, ranging from �4.5% to 4.8%. Finally Panel C is the averages

of �µ,j/�j � 1. Their absolute values generally show a declining pattern across beta quintiles

and there is asymmetry in the magnitude of the decline. In regression terms, when �µ,j is

regressed on �j, the intercept term is positive and the regression coe�cient is less than one.

Indeed, in the 5000 simulations, the average intercept is 0.0658 and the average regression

coe�cient is 0.936.

The explanations of the beta anomaly provided in the literature are mostly based on

short-selling or borrowing constraints. One argument is that when short-selling constraint

is binding, investors behave as if they are holding the market portfolio and a zero-beta

portfolio (Black (1972), Frazzini and Pedersen (2014)). The expected return on the zero-

beta portfolio is higher than that of the riskless rate. Thus it appears that the security

market line is flatter than the one predicted by the CAPM theory. Another argument is

that heterogeneous expectations and short-sale constraints tend to lead to over-pricing of

high beta stocks. Thus the security market line is flatter or even downward sloping in time

of higher disagreement (Hong and Sraer (2016)). The third and more recent argument is

that the beta anomaly maybe the consequence of the idiosyncratic volatility anomaly (Liu,

Stambaugh, and Yuan (2018)).

As argued in Liu, Stambaugh, and Yuan (2018), while most of the explanations provided

in the literature are consistent with the negative relation between ↵ and beta as seen in the
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Table 2: The Averages and Covariances of � and �µ/�

The table reports the averages and covariances of �j and �µ,j across the 5 ⇥ 5 mispricing
and beta quintiles. Panel A reports �̄. Panel B reports cov(x,�). Panel C reports x̄. Panel
D reports the average number of stocks.

Mispricing Beta Quintile

Quintile Lowest 2 3 4 Highest

Panel A. �

Over-priced 0.396 0.824 1.277 1.855 3.198

2 0.390 0.809 1.263 1.819 2.950

3 0.398 0.809 1.263 1.820 2.941

4 0.390 0.820 1.257 1.807 2.831

Under-priced 0.401 0.807 1.261 1.837 2.999

Panel B. cov(�µ/�,�)

Over-priced 0.048 0.010 0.004 0.004 0.020

2 0.025 0.004 0.002 0.002 0.009

3 0 0 0 0 0

4 -0.023 -0.005 -0.002 -0.002 -0.010

Under-priced -0.045 -0.008 -0.006 -0.004 -0.014

Panel C. �µ/� � 1

Over-priced -1.186 -0.515 -0.349 -0.255 -0.190

2 -0.533 -0.235 -0.145 -0.103 -0.066

3 0.010 0.006 0.002 0 -0.001

4 0.538 0.224 0.146 0.108 0.068

Under-priced 1.099 0.543 0.346 0.243 0.177

Panel D. Number of Stocks

Over-priced 25 25 31 41 63

2 33 33 33 37 33

3 38 39 37 29 22

4 34 30 35 34 22

Under-priced 37 40 31 27 26
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last row of Panel A of Table 1, they are silent on the pattern of relations between ↵ and beta

when examine for over-priced and under-priced stocks separately, as shown in Panel A. Liu,

Stambaugh, and Yuan (2018) provide their own explanation. Their argument is based on

limits to arbitrage. Over-priced stocks are more di�cult to arbitrage because of the higher

cost in short sale, therefore the mispricing is stronger. Under-priced stocks on the other hand

are easier to arbitrage. The positive relation between ↵ and beta is weaker. The well-known

beta anomaly is the net result of relative stronger e↵ect of the negative relation between ↵

and beta for over-priced stocks over that of the under-priced stocks. What we show is that

even in the absence of short-sale constraints and limits to arbitrage, beta anomaly can still

arise due to ambiguity.

6.3 Idiosyncratic Volatility (IVOL) Anomaly

Idiosyncratic volatility anomaly is a puzzling empirical pattern that was first documented by

Ang et al. (2006). Stocks with higher idiosyncratic volatility have subsequent lower returns.

It is puzzling because traditional theories predict either no relation between idiosyncratic

volatility and expected returns (CAPM theory) or a positive relation due to market incom-

pleteness and frictions (Merton (1987), Hirshleifer (1988)). As referred to in the introduction,

a number of explanations have been provided in the literature. In this section, we provide a

new angle for understanding the IVOL anomaly.

We first describe the simulation result. We use the same simulation data as in the preced-

ing section, but double sort the data by idiosyncratic volatility instead of beta. Specifically,

we independently assign stocks to Mispricing (↵) Quintiles and IVOL Quintiles and obtain

5⇥ 5 intersecting cells.

The result is reported in the Table 3. Panel A reports the averages of the ↵s and Panel

B reports the t-statistics of the averages. In the middle of Panel A are the 5 ⇥ 5 cells of

double-sort. The last row reports the average of ↵s of all stocks sorted by IVOL. The second

last row are the di↵erences in ↵ between the most over-priced and the most under-priced

stocks. The last column of Panel A shows the di↵erences, H �L, between the average ↵s of
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Table 3: Alphas for Portfolios Sorted on IVOL and Mispricing

The table reports the alpha for portfolios formed by an independent 5 ⇥ 5 sort on IVOL and

Mispricing.

Mispricing IVOL Quintile

Quintile Lowest 2 3 4 Highest H-L

A. Alpha (%)

Over-priced -0.62 -0.60 -0.60 -0.62 -0.91 -0.29

2 -0.22 -0.25 -0.27 -0.21 -0.26 -0.04

3 0.00 0.01 0.00 0.00 0.01 0.01

4 0.26 0.26 0.28 0.26 0.28 0.01

Under-priced 0.60 0.60 0.61 0.67 0.79 0.18

Over-Under -1.22 -1.20 -1.21 -1.30 -1.69

All stocks 0.03 0.02 0.02 0.02 -0.09 -0.12

B. T statistics

Over-priced -12.76 -21.44 -20.34 -17.27 -22.08 -3.46

2 -18.87 -19.26 -21.06 -17.59 -15.30 -1.88

3 0.43 1.11 -0.37 0.04 0.90 0.54

4 24.07 24.51 21.63 17.44 15.80 0.62

Under-priced 19.11 18.88 21.45 19.67 15.85 2.48

Over-Under -22.09 -28.42 -29.46 -26.08 -26.50

All stocks 1.19 0.64 0.59 0.48 -1.79 -2.13
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the stocks with the highest IVOL and that with the lowest IVOL.

In Table 3, first we see that in the last row of Panel A, there is a negative relation between

IVOL and return among over-priced stocks, which is the idiosyncratic volatility anomaly first

reported in Ang et al. (2006). The rest of the result in Panel A has a similar pattern as

in Panel of Table 1. When di↵erentiated between over-priced and under-priced stocks, the

first row of Panel A shows that among over-priced stocks, there is a negative relationship

between ↵ and IVOL, while the fifth row shows that among under-priced stocks, there is

a positive relationship between ↵ and IVOL. The middle rows, which are for stocks that

are not obviously mispriced, ↵ and IVOL exhibit a flat relation. Third, Panel B of Table 3

shows that the negative or positive relations between ↵ and IVOL for all stocks, for over-

priced stocks, or for under-priced stocks, measured by H-L in the last column in Panel A,

are statistically significant. Overall, the result reported in Table 3 is qualitatively similar to

that reported in Stambaugh, Yu, and Yuan (2015).

To provide the explanation of the result, we note that as in the case of beta anomaly,

the mispricing is given by

↵j = �µ


�µ,j

�j
� 1

�
�j = �µ [�µ,j � �j] . (19)

Note next that

�µ,j =
(⌦µ✓m)j
✓>m⌦µ✓m

, �j =
(⌦✓)j
✓>⌦✓

Thus

�µ,j � �j =
⇢j,⌦µ�jp
✓>m⌦µ✓m

� ⇢j,⌦�jp
✓>⌦✓

=

"
⇢j,⌦µp
✓>m⌦µ✓m

� ⇢j,⌦p
✓>⌦✓

#
�j

U✓m =
U✓m

�j
�j

where ⇢j,⌦µ is the correlation coe�cient between the market portfolio and asset j when ⌦µ

is taken as the variance-covariance matrix, and ⇢j,⌦ is the correlation coe�cient between the

market portfolio and asset j when ⌦ is taken as the variance-covariance matrix. Clearly,

ceteris paribus, the mispricing range is increasing in stock’s total volatility (�j). However,

ex ante, there is no reason that
⇢j,⌦µp
✓>m⌦µ✓m

is alway greater than ⇢j,⌦p
✓>⌦✓

, or vice versa. In
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fact for over-priced stocks, ↵j is negative and
⇢j,⌦µp
✓>m⌦µ✓m

<
⇢j,⌦p
✓>⌦✓

. Moreover, there is no ex

ante reason that �j is strongly correlated with
⇢j,⌦µp
✓>m⌦µ✓m

� ⇢j,⌦p
✓>⌦✓

. Then when over-priced

stocked are divided into �j quintiles, there is likely a negative relation between mispricing

and �j. As there is a strong correlation (over 95%) between total volatility and idiosyncratic

volatility, that negative relation implies a negative relation between mispricing and IVOL,

which explains the first row of Panel. The row for the under-priced stock in Panel can be

explained by a similar argument.

Table 3 reports the results of one run of the simulation. Again, to check the qualitative

robustness of the results, in the repeated 5000 exercises for beta anomaly, we also checked

for the idiosyncratic volatility anomaly. The H-L cell in the over-price quintile is significant

(at 5%) 99.6% of the 5000 simulation exercises. The corresponding numbers for H-L cells for

the under-pricing quintile and all stocks are 99.9% and 47.8%, respectively. Interestingly, in

contrast to the case of beta anomaly, the H-L cell for all stocks are significant for just under

50% of the 5000 simulations.

6.4 Beta Anomaly and Idiosyncratic Volatility Anomaly

So far, we have looked at the beta anomaly and idiosyncratic volatility separately. Since the

same set simulation data exhibit both of these two anomalies as in the real world, one cannot

help wonder if there is a deeper connection between the two. In our model, the connection

is that they are both caused by ambiguity. However, the mechanisms are not exactly the

same and hence there are some di↵erences.

Now obviously, if there is a strong positive correlation between idiosyncratic volatility

and beta, then beta anomaly and idiosyncratic volatility anomaly might be highly related.

The total volatility can be decomposed as

�
2
i = �

2
i �

2
m + �

2
i,✏.

Because of diversification, the total volatility of the market portfolio is typically much smaller

than the volatility of individual stock’s. Thus total volatility (�i) is highly correlated with
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idiosyncratic volatility (�i,✏). This is consistent with empirical findings. Empirically, the

correlations between total volatility and idiosyncratic volatility in the G7 countries are all

over 95% (Ang et al. (2009)). On the other hand, the beta of an individual stock is

�i = ⇢i,m
�i

�m
.

As there is no obvious reason that ⇢i,m is highly correlated with �i, other things being equal,

high total volatility should imply high risk beta. This argument suggests there is a positive

relation between total volatility and beta, which is also what is true both in our simulation

data set and in the real world data as well. Liu, Stambaugh, and Yuan (2018) reports a

correlation coe�cient of 0.33. In our 5000 repeated simulation exercises, the average is 0.83.

Liu, Stambaugh, and Yuan (2018) makes an interesting argument about the potential

connection between the beta anomaly and the idiosyncratic volatility anomaly. They argue

that the high correlation between idiosyncratic volatility and beta then implies that it is

very likely that one sees both anomalies at the same time. They argue further that the beta

anomaly is likely due to idiosyncratic volatility anomaly, as the latter is likely caused by lim-

its to arbitrage (Stambaugh, Yu, and Yuan (2015)) while there is no such obvious reason for

beta anomaly. Indeed, in the 5000 repeated simulations, for over-priced stocks, beta anomaly

appears in 90% of the simulations and idiosyncratic volatility anomaly appears 99.6%. In-

terestingly, however, for under-priced stocks and for all stocks the two anomalies are not

as highly correlated as the high correlation between idiosyncratic volatility and beta would

suggest. In the 5000 repeated simulations, for under-priced stocks (all stocks), idiosyncratic

volatility anomaly appears 99.88% (47.8%) while beta anomaly appears 14.84% (100%).

Such asymmetry between under vs over-priced stocks is also evidenced in Stambaugh, Yu,

and Yuan (2015) and Liu, Stambaugh, and Yuan (2018).

7 Conclusion

We develop a model that is useful for understanding the cross-sectional characteristics of

asset returns. The model is otherwise standard. The additional ingredient is that the
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agent is ambiguous about the probability distribution of the returns of the assets and she is

ambiguity averse. The ambiguity can be about the mean as well as the variance-covariance

matrix of the returns. The equilibrium cross-sectional expected returns can be described

by a three-factor model, capturing risk, mean ambiguity and variance-covariance ambiguity

respectively. Expected returns include a mean ambiguity premium, a variance-covariance

ambiguity premium, as well as the standard risk premium.

The cross-sectional asset returns in our model can exhibit a number of patterns that

are silent in standard models. The most important is that mispricing, relative to standard

models, occur not because the omitted important economic variables, but simply because

the presence of ambiguity. In a simulation study, we examine two salient cross-sectional

regularities of asset returns: the beta anomaly and the idiosyncratic volatility anomaly. We

show that overall the alpha in our model decreases with beta. However, when sorted by

mis-pricing, alpha of over-priced assets decreases with beta, while alpha of under-priced as-

sets increases with beta. The alphas’ exhibit similar characteristics when sorted by total

or idiosyncratic volatility. Alpha of over-priced assets decreases with total or idiosyncratic

volatility, while alpha of under-priced assets increases with total or idiosyncratic volatility.

Overall alpha decreases with beta total or idiosyncratic volatility. As argued by Liu, Stam-

baugh, and Yuan (2018), reconciling these cross-sectional characteristics of asset returns

is important for understanding the beta anomaly and the idiosyncratic volatility anomaly.

They argue that limits to arbitrage and the resulting ine�ciency may give rise the return

characteristics. The study in this paper provides an alternative perspective.
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A Appendix

A.1 Relative Entropy

Suppose that R ⇠ N(µ,⌦) under P and R ⇠ N(µ̂, ⌦̂) under Q. Then

E[⇠ ln(⇠)] = E
Q[ln ⇠] =

1

2
E

Q

"
ln(

|⌦|
|⌦̂|

)� (R� µ̂)>⌦̂�1(R� µ̂) + (R� µ)>⌦�1(R� µ)

#

=
1

2
ln(

|⌦|
|⌦̂|

) +
1

2
E

Q[�tr(⌦̂�1(R� µ̂)(R� µ̂)>) + tr(⌦�1(R� µ)(R� µ)>]

=
1

2
[ln(

|⌦|
|⌦̂|

)�N + tr(⌦�1⌦̂) + (µ� µ̂)>⌦�1(µ� µ̂)]

=
1

2
[tr(⌦�1(⌦̂� ⌦))� ln |⌦�1⌦̂|+ (µ� µ̂)>⌦�1(µ� µ̂)],

as is to be shown.

A.2 Proof of Lemma 1

The proof for the first statement of the lemma is the same as that in Kogan and Wang

(2003). The proof of the second statement is straightforward.

A.3 Proof of Lemma 2

Uniqueness: Note that the objective function is a linear function of ⌦̂. In order to prove the

uniqueness of the solution, we first prove the convexity of the constraints function. For any

k 2 K, denote

g(⌦̂Jk) =
1

2
[ln(

|⌦Jk |
|⌦̂Jk |

)�NJk + tr(⌦�1
Jk
⌦̂Jk)]� �

2
⌘2,k,

=
1

2
[� ln(|⌦̂Jk |) + tr(⌦�1

Jk
⌦̂Jk)] +

1

2
[ln(|⌦Jk |)�NJk ]� ⌘2,k,

=
1

2
[� ln(|⌦̂Jk |) + tr(⌦�1

Jk
⌦̂Jk)] + Ck,

where Ck = 1
2 [ln(|⌦Jk |) � NJk ] � ⌘2,k is a constant. We need to show, for any ⌦̂1

Jk
, ⌦̂2

Jk
and

a 2 (0, 1),

g(a⌦̂1
Jk

+ (1� a)⌦̂2
Jk
)  ag(⌦̂1

Jk
) + (1� a)g(⌦̂2

Jk
),
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That is, we need to show,

� ln(|a⌦̂1
Jk

+ (1� a)⌦̂2
Jk
|) + tr[⌦�1

Jk
(a⌦̂1

Jk
+ (1� a)⌦̂2

Jk
)] 

a[� ln(|⌦̂1
Jk
|) + tr(⌦�1

Jk
⌦̂1

Jk
)] + (1� a)[� ln(|⌦̂2

Jk
|) + tr(⌦�1

Jk
a⌦̂2

Jk
)],

which is,

ln(|a⌦̂1
Jk

+ (1� a)⌦̂2
Jk
|) � a ln(|⌦̂1

Jk
|) + (1� a) ln(|⌦̂2

Jk
|).

From the Minkowski Inequality, if A and B are positive semidefinite Hermite Matrices,

|A+B| � |A|+ |B|,

Therefore,

ln(|a⌦̂1
Jk

+ (1� a)⌦̂2
Jk
|) � ln(a|⌦̂1

Jk
|+ (1� a)|⌦̂2

Jk
|) � a ln(|⌦̂1

Jk
|) + (1� a) ln(|⌦̂2

Jk
|),

as desired.

Suppose to the contrary that there exist two distinct solutions, ⌦̂1 and ⌦̂2. For any

a 2 (0, 1), denote ⌦̂a = a⌦̂1 + (1� a)⌦̂2 and let ⌦̂h
Jk
, h = (1, 2, a) denote the corresponding

solution for Jk. The convexity of all the constraints functions implies that

g(⌦̂a
Jk
) =

1

2
[ln(

|⌦Jk |
|⌦̂a

Jk
|
)�NJk + tr(⌦�1

Jk
⌦̂a

Jk
)]� �

2
⌘2,k  ag(⌦̂1

Jk
) + (1� a)g(⌦̂2

Jk
)  0,

for k = 1, 2, . . . ,K.

Let k 2 {1, . . . , K}. Suppose that k is such that

1

2
[ln(

|⌦Jk |
|⌦̂a

Jk
|
)�NJk + tr(⌦�1

Jk
⌦̂a

Jk
)]� ⌘2,k = 0, for a = 0, 1, ā.

where ā 2 (0, 1). Then by strict convexity, we must have ⌦̂1
Jk

= ⌦̂2
Jk
. Denote by A the set of

all such k. If

JA = [k2AJk = {1, 2, ..., N},
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then ⌦̂1 = ⌦̂2 and we have a contradiction. If JA 6= {1, 2, ..., N}, without loss of generality,

assume that 1 62 JA and JA = {2, ..., N}. Then all ⌦̂ of the following form

⌦̂ =

2

6666664

�11 �12 · · · �1N

�21 �
1
12

... �
1
2N

...
...

. . .
...

�N1 �
1
N2 · · · �

1
NN

3

7777775
(20)

satisfy

1

2
[ln(

|⌦Jk |
|⌦̂Jk |

)�NJk + tr(⌦�1
Jk
⌦̂Jk)]� ⌘2,k = 0, for k 2 A.

where �1i 2 R, i = 1, 2, ..., N is the variance (covariance). Since ⌦̂1 and ⌦̂2 are solutions,

we have, for each k 62 A,

1

2
[ln(

|⌦Jk |
|⌦̂a

Jk
|
)�NJk + tr(⌦�1

Jk
⌦̂a

Jk
)]� ⌘2,k < 0, for k /2 A.

for either a = 1 or 2. By strict convexity shown earlier, the strict inequality holds for all

a 2 (0, 1), in particular for a = 1/2. Note that for a = 1
2 ,

⌦̂a =

2

6666664

�1
11+�2

11
2

�1
12+�2

12
2 · · · �1

1N+�2
1N

2

�1
21+�2

21
2

�1
22+�2

22
2

...
�1
2N+�2

2N
2

...
...

. . .
...

�1
N1+�2

N1
2

�1
N2+�2

N2
2 · · · �1

NN+�2
NN

2

3

7777775
=

2

6666664

�1
11+�2

11
2

�1
12+�2

12
2 · · · �1

1N+�2
1N

2

�1
21+�2

21
2 �

1
22

... �
1
2N

...
...

. . .
...

�1
N1+�2

N1
2 �

1
N2 · · · �

1
NN

3

7777775

because JA = {2, ..., N}. By continuity, for small ✏ > 0, all the ⌦̂ in (20) with �11 2

(�
1
11+�2

11
2 � ✏,

�1
11+�2

11
2 + ✏) and �1i =

�1
1i+�2

1i
2 , for i = 2, ..., N , satisfy

1

2
[ln(

|⌦Jk |
|⌦̂Jk |

)�NJk + tr(⌦�1
Jk
⌦̂Jk)]� ⌘2,k < 0, for k /2 A.

Combining with the case k 2 A, we have,

1

2
[ln(

|⌦Jk |
|⌦̂Jk |

)�NJk + tr(⌦�1
Jk
⌦̂Jk)]� ⌘2,k  0, for k = 1, 2, ..., K.
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That is, all so defined ⌦̂ are in the choice set. As the objective function is a linear function

of ⌦̂, so we have,

✓
>(⌦̂� ⌦)✓ = ✓

>(⌦̂1/2 � ⌦)✓ + ✓
2
1(�11 � (�1

11 + �
2
11)/2)

Clearly, we can choose specific �11 to achieve higher value of ✓>(⌦̂�⌦)✓, which is a contra-

diction!

Next, write down the Lagrangian function as follows,

L = ✓
>
U✓ �

KX

k=1

�2,k

⇢
1

2

⇥
tr(⌦�1

Jk
UJk)� ln |IJk + ⌦�1

Jk
UJk |

⇤
� ⌘2,k

�
,

Note that @tr(⌦�1
U)/@uij = tr(⌦�1

Uij) where Uij is the matrix which has zero every-

where except in the ith row and jth column where it is equal to 1. @ ln |I + ⌦�1
U |/@uij =

(⌦+ U)�1
ij . tr(A

>
B) =

P
i

P
j AijBij. FOC is

@L
@U

= ✓✓
> � S �

KX

k=1

�2,k

2

⇥
�(⌦Jk + UJk)

�1 + ⌦�1
Jk

⇤
= 0,

where S is a sign matrix whose elements take 1 if there is variance-covariance ambiguity

information about the corresponding elements in ⌦ and takes 0 otherwise. ✓✓
> � S is the

entry-wise product between two matrices, which produces another matrix where each element

ij is the product of elements ij of the original two matrices. So

KX

k=1

�2,k(✓)(⌦Jk + UJk)
�1 =

KX

k=1

�2,k(✓)⌦
�1
Jk

� 2✓✓> � S.

Note, similar with Lemma 1, the proof above is also based on the assumption that there

are multiple sources of information (K) and the information can cover all the assets in the

market. So
PK

k=1 �2,k(✓)⌦
�1
Jk

should be a full-rank matrix. If there is no variance-covariance

ambiguity about some elements in the original ⌦, the above equations becomes 0 = 0 in the

corresponding elements, which means those equations are redundant.
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A.4 Proof of Proposition 3

The agents utility maximization problem is

sup
✓

min
Q2P

E
Q


�1

�
e
��[✓>(R�r1)+(1+r)]

�
= sup

✓


�1

�
e
��[✓>(µ�r1)+1+r��1(✓)]+

1
2�

2[✓>⌦✓+�2(✓)]

�
,

The FOC for ✓ is given by

µ� r1��0
1(✓)� �⌦✓ � 1

2
��0

2(✓) = 0,

So the optimal portfolio choice follows

µ� r1 = �0
1(✓) + �⌦✓ +

1

2
��0

2(✓).

By envelope theorem, we have, �0
1(✓) = v(✓) and �0

2(✓) = 2U(✓)✓. Thus

µ� r1 = v(✓) + � [⌦+ U(✓)] ✓,

as is to be shown.

A.5 Proof of Lemma 5

(13) follows readily from Lemma 1. For variance-covariance ambiguity, let

L = ✓
>
U✓ �

KX

k=1

�2,k

�⇥
tr(⌦�1

Jk
UJk)� ln |IJk + ⌦�1

Jk
UJk |

⇤
� 2⌘2,k

�

It follows that the FOC is,

KX

k=1

�2,k(✓)[⌦Jk + U
⇤
Jk
(✓)]�1 =

KX

k=1

�2,k(✓)⌦
�1
Jk

� 2✓✓>.

As Jk, k = 1, . . . , K, are non-overlapping,

U
⇤
Jk
(✓) =

✓
⌦�1

Jk
� 2

�2,k(✓)
✓Jk✓

>
Jk

◆�1

� ⌦Jk =
2

�2,k(✓)� 2✓>Jk⌦Jk✓Jk

⌦Jk✓Jk✓
>
Jk
⌦Jk .
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Plugging into the constraint, we can solve for �2(✓),

2⌘2,k = � ln |I + ⌦�1
Jk
U

⇤
Jk
(✓)|+ tr(⌦�1

Jk
U

⇤
Jk
(✓))

= � ln(|I + 2

�2,k(✓)� 2✓>Jk⌦Jk✓Jk

✓Jk✓
>
Jk
⌦Jk |) + tr

 
2

�2,k(✓)� 2✓>Jk⌦Jk✓Jk

✓Jk✓
>
Jk
⌦Jk

!

= � ln

 
1 +

2✓>Jk⌦Jk✓Jk

�2,k(✓)� 2✓>Jk⌦Jk✓Jk

!
+

2✓>Jk⌦Jk✓Jk

�2,k(✓)� 2✓>Jk⌦Jk✓Jk

.

as is to be shown. It is readily seen that U is positive definite.
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